Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the st (2024)

Design and Analysis of Analog Filters: A Signal Processing Perspective Paarmann L.D. 1st Edition

Chapter 4, Problem 21

`}function getSectionHTML(section, chapter_number){ if (section.has_questions){ const current_section_id = ''; const active_str = current_section_id == section.id ? 'active' : ''; return `

  • ${chapter_number}.${section.number} ${section.name}

  • ` } return '';}function getProblemHTML(problem, appendix){ var active_str = problem.active == true ? 'active' : '' return `

  • Problem ${problem.number}${appendix}
  • `}function getProblemsHTML(problems, section_id){ var output = ''; var abc = " ABCDEFGHIJKLMNOPQRSTUWXYZ".split(""); var idx = 0; var last_problem = 0; for (let i = 0; i < problems.length; i++) { if (section_id == 0){ var times = Math.floor(idx/25)+1; var appendix = abc[idx%25+1].repeat(times) }else{ var appendix = ''; } output += getProblemHTML(problems[i], appendix) if (last_problem != problems[i].number){ idx = 1; }else{ idx = idx + 1; } last_problem = problems[i].number } return output;}function getChaptersHTML(chapters){ var output = ''; for (let i = 0; i < chapters.length; i++) { output += getChapterHTML(chapters[i]) } return output;}function getSectionsHTML(section, chapter_number){ var output = ''; for (let i = 0; i < section.length; i++) { output += getSectionHTML(section[i], chapter_number) } return output;}$(function(){ $.ajax({ url: `/api/v1/chapters/`, data:{ book_id : '26807' }, method: 'GET', success: function(res){ $("#book-chapters").html(getChaptersHTML(res)); $(".collapsable-chapter-arrow").on('click',function(e){ var section = $(this).siblings(".section-container"); var chapter_id = $(this).data('chapter-id') var chapter_number = $(this).data('chapter-number') if(section.is(":visible")){ $(this).removeClass('open'); section.hide('slow'); }else{ $(this).addClass('open'); section.show('slow') if (section.children('li').length == 0){ $.ajax({ url: `/api/v1/sections/`, data:{ chapter_id : chapter_id }, method: 'GET', success: function(res){ section.html(getSectionsHTML(res, chapter_number)) $(".collapsable-section-arrow").off('click').on('click',function(e){ var problems = $(this).siblings(".problem-container"); if(problems.is(":visible")){ $(this).removeClass('open'); problems.hide('slow'); }else{ var section_id = $(this).data('section-id'); var question_id = $(this).data('current-problem'); $(this).addClass('open'); problems.show('slow') if (problems.children('li').length == 0){ $.ajax({ url: `/api/v1/section/problems/`, data:{ section_id : section_id, question_id: question_id }, method: 'GET', success: function(res){ problems.html(getProblemsHTML(res, section_id)) }, error: function(err){ console.log(err); } }); } } }); if(first_section_load){ $(".collapsable-arrow.open").siblings(".section-container").find(`.collapsable-section-arrow[data-section-id=${current_section}]`).click(); first_section_load = false; } }, error: function(err){ console.log(err); } }); } } }); if(current_chapter && first_chapter_load){ $(`.collapsable-chapter-arrow[data-chapter-id=${current_chapter}]`).click(); first_chapter_load = false; } }, error: function(err){ console.log(err); } }); });

    Using the MATLAB functions cheblap, impulse and step:
    (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with $\omega_p=1$, $A_p=1.2 d B$, and $N=6$.
    (b) Determine the impulse response and the step response for the filter of part (a).
    (c) By multiplying the pole vector found in part (a) by $2 \pi 1000$ determine the transfer function of a Chebyshev Type I filter with $f_p=1000 \mathrm{~Hz}$, $A_p=1.2 d B$, and $N=6$.
    (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in $d B$ and a linear horizontal scale from 0 to $5000 \mathrm{~Hz}$. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase.
    (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by $1 /(2 \pi 1000)$, and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of $2 \pi 1000$.
    (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d).
    (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): $t_{g d}(n) \cong-[\phi(n)-\phi(n-1)] / S_s$, where $\phi(n)$ is the phase in radians at step $n$, and $S_s$ is the step size in $\mathrm{rad} / \mathrm{s}$.

    Video Answer

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (3) Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (4) Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (5)

    14 people are viewing now

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (6)

    Get the answer to your homework problem.

    Try Numerade free for 7 days

    Input your name and email to request the answer

    Numerade Educator

    Like

    Report

    Request a Custom Video Solution

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (7)

    We will assign your question to a Numerade educator to answer.

    Answer Delivery Time

    Est. 2-3 hours
    You are asking at 3:30PM Today

    Using the MATLAB functions cheblap, impulse and step:(a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with $\omega_p=1$, $A_p=1.2 d B$, and $N=6$.(b) Determine the impulse response and the step response for the filter of part (a).(c) By multiplying the pole vector found in part (a) by $2 \pi 1000$ determine the transfer function of a Chebyshev Type I filter with $f_p=1000 \mathrm{~Hz}$, $A_p=1.2 d B$, and $N=6$.(d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in $d B$ and a linear horizontal scale from 0 to $5000 \mathrm{~Hz}$. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase.(e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by $1 /(2 \pi 1000)$, and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of $2 \pi 1000$.(f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d).(g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): $t_{g d}(n) \cong-[\phi(n)-\phi(n-1)] / S_s$, where $\phi(n)$ is the phase in radians at step $n$, and $S_s$ is the step size in $\mathrm{rad} / \mathrm{s}$.

    We’ll notify you at this email when your answer is ready.

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (8)

    More Than Just

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (9)

    We take learning seriously. So we developed a line of study tools to help students learn their way.

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (10)Ace Chat

    Your personal AI tutor, companion, and study partner. Available 24/7.

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (11)Ask Our Educators

    Ask unlimited questions and get video answers from our expert STEM educators.

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (12)Notes & Exams

    Millions of real past notes, study guides, and exams matched directly to your classes.

    Video Answers to Similar Questions

    Best Matched Videos Solved By Our Expert Educators

    02:15 Consider the following transfer function:H(s) = wn / (s^2 + 2ξwns + wn^2)Where wn = 50 and ξ = 1/4(a) Hand Sketch the Bode plot for amplitude… 01:46 Consider the following transfer function:H(s) = 1 / (s^2 + 2s + 1)Where wn = 100 and ζ = 1/√2(a) Hand sketch the Bode plot for amplitude and…

    More Solved Questions in Your Textbook

    Not your book?

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (17)

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (18)

    Design and Analysis of Analog Filters: A Signal Processing Perspective

    Paarmann L.D. 1st Edition

    Chapter 4

    Chapter 1

    Chapter 2

    Chapter 3

    Chapter 4

    Chapter 5

    Chapter 6

    Chapter 7

    Chapter 8

    Chapter 9

    Chapter 10

    Chapter 11

    Sections

    Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 Problem 21

    NO COMMENTS YET

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the step response for the filter of part (a). (c) By multiplying the pole vector found in part (a) by 2 π1000 determine the transfer function of a Chebyshev Type I filter with fp=1000 Hz, Ap=1.2 d B, and N=6. (d) Determine and plot the magnitude frequency response of the filter of part (c) by using the MATLAB function freqs. Use a vertical scale in d B and a linear horizontal scale from 0 to 5000 Hz. Also determine and plot the phase response over this same frequency range. Use the MATLAB function unwrap to display the smooth phase response rather than the principle phase. (e) By appropriately scaling the impulse response and the step response of part (b), determine and plot the impulse response and the step response of the filter of part (c). That is, the time axis for the step response needs to scaled by 1 /(2 π1000), and the unit impulse response needs the same time-axis scaling and requires an amplitude scaling of 2 π1000. (f) Determine and plot the phase delay of the filter of part (c). Note that this is easily obtained from the phase response of part (d). (g) Determine and plot the group delay of the filter of part (c). Note that this also is easily obtained from the phase response of part (d): tg d(n) ≅-[ϕ(n)-ϕ(n-1)] / Ss, where ϕ(n) is the phase in radians at step n, and Ss is the step size in rad / s. | Numerade (19)

    Just now.

    Using the MATLAB functions cheblap, impulse and step: (a) Determine the transfer function in polynomial form, and also factored to indicate the poles, of a Chebyshev Type I filter with =1, Ap=1.2 d B, and N=6. (b) Determine the impulse response and the st (2024)
    Top Articles
    Herramientas Gray - [PDF Document]
    Nfsd Web Portal
    The Young And The Restless Two Scoops
    Stayton Craigslist
    Craigslist Apartments For Rent Cheap
    Barbara Roufs Measurements
    Gasbuddy Joliet
    10 Tips for Making the Perfect Ice for Smoothies
    Moonrise Tonight Near Me
    It May Surround A Charged Particle Crossword
    Victoria Tortilla & Tamales Factory Menu
    Gateway Login Georgia Client Id
    Miller Motte College Student Portal
    Bg3 Fake Portrait Of A Noble Before His Death
    3472542504
    Busted Newspaper Randolph County
    8 Restaurant-Style Dumpling Dipping Sauces You Can Recreate At Home
    Sundance Printing New Braunfels
    月曜から夜ふかし 9Tsu
    Leaks Mikayla Campinos
    Sunday Td Bank
    Exquisitely Stuffed Terraria
    Lorain County Busted Mugshots
    Craigslist Westchester Cars For Sale By Owner
    Roses Gordon Highway
    Power Outage Hales Corners
    Rub Rating Louisville
    Costco Gas Price City Of Industry
    Starfield PC, XSX | GRYOnline.pl
    Winnie The Pooh Sewing Meme
    Act3: Walkthrough | Divinity Original Sin 2 Wiki
    Haktuts.in Coin Master 50 Spin Link
    Hyvee Workday
    Aunt Nettes Menu
    Big Boobs Indian Photos
    They Cloned Tyrone Showtimes Near Showbiz Cinemas - Kingwood
    Hyvee.com Login
    Jersey Mikes Ebt
    Linktree Teentinyangel
    Craigslist Palm Desert California
    Game Akin To Bingo Nyt
    Leaked Full Video Of Tiktok Star The Real Cacagirl AKA Realcacagirl - Cara Mesin
    Shs Games 1V1 Lol
    Gunblood Unblocked 66
    Enlightenment Egg Calculator
    Osrs Desert Heat
    Lucky Money Strain
    Deml Ford Used Cars
    Tia V15.1 Update
    Hkx File Compatibility Check Skyrim/Sse
    Basketball Stars Unblocked Games Premium
    18 Awesome Things to do in Fort Walton Beach Florida 2024 - The Wanderlust Within
    Latest Posts
    Article information

    Author: Dong Thiel

    Last Updated:

    Views: 6205

    Rating: 4.9 / 5 (79 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Dong Thiel

    Birthday: 2001-07-14

    Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

    Phone: +3512198379449

    Job: Design Planner

    Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

    Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.